您現(xiàn)在的位置:首頁 > 綜合 > 特別關(guān)注 > 正文

勒讓德濾波器(Legendre)的綜合設(shè)計詳解

時間:2023-06-16 17:24:58    來源:電路設(shè)計小工具    

文章詳細(xì)對勒讓德濾波器的綜合設(shè)計進(jìn)行講解,解釋如何從單調(diào)最衰減特性推導(dǎo)出勒讓德濾波器的。最后介紹基于Matlab的濾波器設(shè)計軟件,以低通、帶通濾波器為例,展示其功能。給出Github相關(guān)鏈接。


(資料圖)

勒讓德濾波器特點和用途

勒讓德濾波器(Legendre Filter、Papoulis Filter、L Filter)濾波器是1959年P(guān)apoulis所提出的一種優(yōu)化的濾波器(譯文:具有單調(diào)響應(yīng)的最優(yōu)濾波器(Optimum Filterswith Monotonic Response)),其幅頻特性曲線介于巴特沃斯和第一類切比雪夫濾波器之間,具體來說在通帶內(nèi)具有像巴特沃斯單調(diào)頻響特性(通帶無紋波),但是在阻帶具有像切比雪夫濾波器那樣具有陡峭的截止特性,這種濾波器在現(xiàn)實中似乎并不常見。

勒讓德濾波器逼近

這里采用了特征多項式,定義為,濾波器整體幅度公式為:

約束

1,是階多項式(可實現(xiàn)性,在頻率增益為0)

2,(低通定義,在頻率為0的位置增益為0)

3,(定義低通帶寬)

4, 在通帶范圍內(nèi)[0, 1]無紋波(勒讓德濾波器特征1)

5, 在截止頻率點處信號衰減最快(勒讓德濾波器特征2)

無紋波

這里需要理解下無紋波從特征多項式上如何理解。

假設(shè)在通帶內(nèi)無紋波,表示在區(qū)間[0,1]是單調(diào)的,即:

或者

衰減最快

這里的衰減最快理解為在處有最大斜率,即:

其中M是最大值。

研究特征多項式的導(dǎo)數(shù)

由于約束4和5都有一個明顯的特征,就是研究特征多項式的導(dǎo)數(shù)會更加方便,所以這里定義:

所以,依據(jù)約束4和5得到:

由約束2和約束3,我們得到:

根據(jù)基本積分公式可以得到:

所以原問題變?yōu)?,尋找一個多項式滿足如下公式:

由理論推導(dǎo),奇數(shù)階(偶數(shù)階推導(dǎo)詳見:偶數(shù)階單調(diào)響應(yīng)的最優(yōu)濾波器)勒讓德濾波器是一個完全平方,即,這樣得到,也就是說問題變?yōu)橐粋€函數(shù)的平方從0到1的積分為1,需要求這個函數(shù)。有很多方法來求解這個方程,首先我們直接求解。

下圖是Legendre濾波器和Butterworth濾波器的特征多項式和其導(dǎo)數(shù)的對比

直接優(yōu)化計算

當(dāng)然假如我們并不了解勒讓德多項式或者雅克比多項式,還是可以直接使用普通多項式來計算,這里以5階為例來計算,假設(shè)所求的多項式的導(dǎo)數(shù)為:

在[0,1]范圍內(nèi)恒定大于等于0,天然滿足單調(diào)條件。然后我們只需要滿足積分條件(也就是約束2和3,),即:

由約束4,需要找到上式約束下的最大值:

這里有3個未知數(shù),約束條件只有1個,所以這時一個多參數(shù)優(yōu)化問題,可以有多種優(yōu)化方法,比較常見的使用拉格朗日乘數(shù)法優(yōu)化,當(dāng)然也可以用各種數(shù)值優(yōu)化工具,這里使用wolfram alpha:

NMaximize[{(a0 + a1 + a2)^2, Integrate[2*x*(a2*x^4+a1*x^2 + a0)^2, {x, 0, 1}] == 1}, {a0, a1, a2}]

得到

所以:

積分后得到:

用代入得到:

即得到了最終5階勒讓德濾波器特征多項式。

正交多項式求解

要實現(xiàn)這個目標(biāo)可以使用正交多項式來求解,這是因為正交多項式每個正交項互不干擾,可以單獨(dú)的調(diào)節(jié)每個系數(shù)達(dá)到逼近目的。

勒讓德多項式逼近

Papoulis使用了勒讓德多項式(Legendre Polynomials)來逼近,勒讓德多項式是一組正交多項式。

前7階勒讓德多項式為:

多項式階數(shù)
0
1
2
3
4
5
6
7

最終我們需要求解的就可以寫成一系列的的多項式的組合。

這里看似將公式復(fù)雜化,但是實際上簡化了計算,原因在于滿足從[-1,1]積分為0,所以當(dāng)上式展開積分后,各個交叉項由于多項式不相關(guān)從而相互抵消為0,只有自身乘以自身的項保留了下來。

上式將一個積分轉(zhuǎn)化為一個普通代數(shù)表達(dá)式,使用勒讓德多項式極大簡化了計算。

到這一步大家解法都統(tǒng)一了,這是一個帶約束的優(yōu)化問題,使用拉格朗日乘數(shù)法即可解決。

這里以為例展示下計算過程(這里,勒讓德多項式到):

約束為

最大化

即最大化(引入拉格朗日乘數(shù))

分別對求偏導(dǎo),令其等于0(求極值點),并列出公式:

化簡得到:

代入最后一個公式得到:

解得:

代入得到:

由于勒讓德多項式是定義在[-1,1]上,所以需要將其轉(zhuǎn)換到[0,1]區(qū)間,令,積分求解得到特征多項式:

frac{1}{8}int_{-1}^{2w^2-1}{1+3x}^2dx

位移雅可比多項式逼近

FUKADA使用了位移雅可比多項式(Shifted Jacobi Polynomials)來逼近,位移雅可比多項式也是一組正交多項式,它包含兩個參數(shù),配置不同的參數(shù)就會表現(xiàn)出不同特征多項式,位移雅可比多項式可以包含幾乎所有的濾波器多項式。下面列出位移雅克比多項式的遞推公式:

其中的系數(shù)為:

當(dāng)且時,上式就為勒讓德多項式。

其他推導(dǎo)方式和之前勒讓德方式相同。

但是這里帶出一個概念,即對于雅克比多項式,滿足正交性質(zhì),但是應(yīng)用更加廣泛:

公式中的是Kronecker delta符號,表示只有當(dāng)時才為1,其他都為0.為權(quán)函數(shù)

在勒讓德多項式中,,即對于整個[-1,1]范圍內(nèi)權(quán)重相同,在不同應(yīng)用場景中,我們可以根據(jù)需要選擇不同的優(yōu)化策略。下圖展示了不同參數(shù)情況下權(quán)重的變化:

當(dāng)權(quán)重且時,多項式是第一類切比雪夫多項式,多項式在兩端的權(quán)重比較大,當(dāng)權(quán)重時,多項式就是第二類切比雪夫多項式,多項式在兩端的權(quán)重小。

在勒讓德濾波器中,權(quán)函數(shù)為1,表面在整個[-1,1]區(qū)間內(nèi),所有點貢獻(xiàn)都相同,這樣綜合出來的必定是無紋波的濾波器??梢赃@樣直觀的理解,假如區(qū)間內(nèi)存在紋波,那么積分值必定會比沒有紋波的大,因為函數(shù)的平方我們可以理解為對函數(shù)求其有效值,那么若存在紋波,那么有效值就等于直流分量加上交流分量,這兩者相加就必定大于其中之一。

使用公式也可以簡單的說明這一點,假設(shè)是一個直流信號,幅度值在[0,1]范圍內(nèi)均為,那么假設(shè)存在一個脈動直流信號在[0,0.5]范圍內(nèi)是,在(0.5,1]范圍內(nèi)是,必定存在即。也即是說,通過平方操作,大的值比小的值放大得更大,大的值變得更加突出。在這樣的優(yōu)化條件下,保持積分值不變,原函數(shù)在端點取得最大值,函數(shù)將呈現(xiàn)單調(diào)變化。

本節(jié)中,通過采用不同的參數(shù)設(shè)置,位移雅可比多項式可以得到不同特性的濾波器。

勒讓德濾波器評價

Papoulis首先第一次提出了這種濾波器就得到很多學(xué)者的關(guān)注,其中相繼發(fā)表了多篇關(guān)于單調(diào)濾波器的設(shè)計,這里發(fā)展出來很多優(yōu)化了的單調(diào)濾波器,比如LSM(Least-Squares-Monotonic)濾波器,H濾波器,這些濾波器各具特點,總結(jié)下來就是我們前面給出的不同約束5所綜合下來的濾波器。

比如H濾波器(本系列文章中有翻譯)就是將約束5修改為:

5, 在漸近頻率點處信號衰減最快(也即特征多項式最高系數(shù)最大,H濾波器特征)

LSM濾波器(本系列文章中有翻譯)就是將約束5修改為:

5, 在通帶范圍內(nèi)曲線所包圍的面積最小(也即在整個通帶范圍內(nèi)濾波器反射或插損最小,LSM濾波器特征)

同理我們可以將巴特沃斯濾波器納入到這種單調(diào)濾波器體系,將約束5修改為:

5, 在0頻率處響應(yīng)最平坦(Butterworth濾波器特征)

可以說Papoulis開創(chuàng)了一種新的濾波器約束規(guī)則,豐富了濾波器的種類。總的來說,這種單調(diào)濾波器也屬于幅度逼近。

最近幾年有論文指出勒讓德濾波器除了階梯的衰減特性外沒有任何其他優(yōu)勢,大家有興趣可以看看,本公眾號已經(jīng)將其翻譯為中文《在連續(xù)時間域中比較Papoulis濾波器和Chebyshev濾波器》。

單調(diào)濾波器系數(shù)和零極點

目前還沒有統(tǒng)一的公式去計算勒讓德濾波器的特征多項式,但是可以通過數(shù)值計算的辦法計算出系數(shù)來,以下提供了生成系數(shù)的Matlab代碼,需要具體源碼的可以去Github上下載。

使用Matlab求解勒讓德特征多項式系數(shù)

%--------------------------------------------------------------------------% Edited by bbl% Date: 2023-06-11(yyyy-mm-dd)% 勒讓德濾波器系數(shù)設(shè)計% 注意返回值低次在前,高次在后%--------------------------------------------------------------------------function [Ln] = funGenLegendreCharacteristicPoly(FilterOrder)% Initialize coefficient vectorcoefficients = ((1:FilterOrder).*2 - 1);% Define coefficient for normalizationif mod(FilterOrder, 2) == 1    % Odd polynomial order    half_order = (FilterOrder - 1) / 2;    norm_coefficient = 1 / (sqrt(2 * (half_order + 1) * (half_order + 1)));else    % Even polynomial order    half_order = FilterOrder / 2 - 1;    norm_coefficient = 1 / sqrt((half_order + 1) * (half_order + 2));    % Check if the half_order is odd or even    if mod(half_order, 2) == 1        % Odd        coefficients(1:2:end) = 0;    else        % Even        coefficients(2:2:end) = 0;    endend% Apply normalization to coefficientscoefficients = coefficients * norm_coefficient;% Initial value for the PhiPhi = 0;% Generate polynomial and add to Phifor i = 1:half_order + 1    current_coefficient = coefficients(i);    legendrePoly = JacobiPoly(i - 1, 0, 0); % Gen legendre polynomial    Phi  = polyadd(Phi, current_coefficient * legendrePoly);end% Calculate Phi^2Phi_squared = conv(Phi, Phi); % For even polynomial order, multiply Phi_squared by (x+1)if mod(FilterOrder, 2) == 0    Phi_squared = conv(Phi_squared, [1,1]);end% Calculate the integral of Phi_squaredintegral_of_Phi_squared = polyint(Phi_squared, 0);% Define the range for polyval functionlower_range = -1; upper_range = [2, -1];% Calculate polyval for lower and upper rangesD = polyval(integral_of_Phi_squared, lower_range);U = substitute_poly(integral_of_Phi_squared, upper_range);% Final resultLn0 = polyadd(U, -D);nLn = length(Ln0);Ln = zeros(1, nLn*2-1);Ln(3:2:end) = fliplr(Ln0(1:end-1));Ln(1)     = Ln0(end);end

運(yùn)行結(jié)果如下:

>> [Ln] = funGenLegendreCharacteristicPoly(5)Ln =    0   0   1   0   -8  0   28  0   -40 0   20

也就是:

這里給出數(shù)值計算出的勒讓德濾波器前7階濾波器多項式(注意這里):

濾波器階數(shù)
1
2
3
4
5
6
7

不同階數(shù)濾波器頻響如下(圖中紅色曲線是勒讓德濾波器頻響,綠色曲線是巴特沃斯頻響,藍(lán)色曲線是切比雪夫I紋波為的頻響):

事實上,勒讓德濾波器的頻率響應(yīng)并未達(dá)到我們預(yù)期的優(yōu)秀程度,從圖中可以看到對比切比雪夫濾波器,勒讓德濾波器沒有優(yōu)勢,因此,一些學(xué)者批評這只是一種適合學(xué)術(shù)研究,而在實際應(yīng)用中并無優(yōu)勢的濾波器。

在s平面取其左半邊極點得到前7階勒讓德濾波器系數(shù)為(, 其中的極點等于的做半邊極點):

濾波器階數(shù)
1
2
3
4
5
6
7

前7階勒讓德濾波器極點為():

濾波器階數(shù)
1
2
3
4
5
6
7

零極點變化動圖(圖中紅色點是勒讓德濾波器極點,藍(lán)色和綠色分別是切比雪夫濾波器極點和巴特沃斯濾波器極點分布,猜測勒讓德濾波器極點也是分布在一個橢圓上,注意這里的零極點圖橫坐標(biāo)是虛軸,縱坐標(biāo)為實軸):

這里通過調(diào)整切比雪夫濾波器紋波大小,驗證了猜測,勒讓德濾波器極點分布近似在一個橢圓上:

下圖是不同類型濾波器的零極點分布圖,紅色曲線和點是5階勒讓德濾波器極點分布,可見勒讓德濾波器的極點在巴特沃斯濾波器和切比雪夫濾波器之間:

勒讓德濾波器綜合

勒讓德波器綜合和巴特沃斯濾波器一樣,屬于全極點濾波器,所以這里僅僅列出一個簡單的3階勒讓德濾波器綜合實例,以供參考:

勒讓德濾波器設(shè)計軟件

基于Matlab的appdesign工具開發(fā)了一套濾波器設(shè)計軟件, 主要特點是:

支持勒讓德濾波器(Legendre Filter)、高斯濾波器(Gaussian Filter)、貝塞爾濾波器(Bessel Filter)、橢圓函數(shù)濾波器(Elliptic/Cauer Filter)、切比雪夫濾波器(Chebyshev I)、逆切比雪夫濾波器(Chebyshev II, Inverse Chebyshev)、巴特沃斯濾波器(Butterworth)設(shè)計

支持4種不同濾波器通帶類型(LPF,HPF,BPF,BRF)設(shè)計

T型和PI型結(jié)構(gòu)濾波器隨意切換

可以設(shè)置阻帶衰減決定濾波器階數(shù)

可以設(shè)置通帶衰減來綜合濾波器

可以隨意配置負(fù)載和終端阻抗, 并支持一端接載(源端電阻短路, 源端電流源, 終端開路, 終端短路)設(shè)計

可以幅頻響應(yīng)分析、零極點分析、瞬態(tài)分析

可以顯示理想頻率響應(yīng)、零極點和實際仿真的的頻率響應(yīng)、零極點

可以支持實際標(biāo)準(zhǔn)器件逼近設(shè)計

Legendre LPF設(shè)計舉例

設(shè)計一款-3dB截止頻率為1GHz, 7階低通Legendre濾波器,輸入輸出阻抗為50歐姆,設(shè)計過程如下:

最終設(shè)計參數(shù)如下:

勒讓德濾波器瞬態(tài)仿真結(jié)果:

勒讓德濾波器AC仿真結(jié)果:

Legendre BPF設(shè)計舉例

設(shè)計6階帶通Legendre濾波器, 中心頻率為1GHz,帶寬為1GHz,50歐姆輸入,輸出阻抗為高阻,最后進(jìn)行瞬態(tài)仿真,設(shè)計過程如下:

最終設(shè)計參數(shù)如下:

AC仿真結(jié)果:

瞬態(tài)仿真結(jié)果:

程序的Matalb源碼已經(jīng)上傳GitHub中,有興趣的同學(xué)可以下載試用體驗,當(dāng)然也歡迎技術(shù)交流。

直線型濾波器設(shè)計預(yù)告

回到我們開啟這一主題的初衷(模擬無源濾波器設(shè)計(一)),想要實現(xiàn)一個直線型濾波器設(shè)計,現(xiàn)在做了這么多鋪墊,我們終于有能力設(shè)計出這樣一個直線型濾波器了。直線型濾波器不也是一種單調(diào)濾波器嗎!只要讓斜率小于0即可。但是我們應(yīng)該也需要考慮到直線型濾波器實際上會出現(xiàn)頻率響應(yīng)大于0的情況出現(xiàn),這里解決方案類似于偶數(shù)階切比雪夫濾波器遇到的問題那樣,實際上偶數(shù)階低通切比雪夫濾波器在綜合時就出現(xiàn)了0頻率處幅度小于0的情況,當(dāng)時得到的結(jié)果是,當(dāng)濾波器兩邊不匹配時,即存在直流衰減情況下是可以實現(xiàn)的。所以我們可以列出直線型濾波器設(shè)計約束規(guī)則:

1,是階多項式(可實現(xiàn)性,在頻率增益為0)

2,(直線的第一個坐標(biāo),在頻率為0的位置增益為IL,)

3,(直線的第二個坐標(biāo),在頻率為1的位置增益為1,即最大值)

4, 在通帶范圍內(nèi)[0, 1]無紋波(直線特征)

編輯:黃飛

關(guān)鍵詞:

凡本網(wǎng)注明“XXX(非中國微山網(wǎng))提供”的作品,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和其真實性負(fù)責(zé)。

特別關(guān)注